Noise figure limits for circular loop MR coils.
نویسندگان
چکیده
Circular loops are the most common MR detectors. Loop arrays offer improved signal-to-noise ratios (SNRs) and spatial resolution, and enable parallel imaging. As loop size decreases, loop noise increases relative to sample noise, ultimately dominating the SNR. Here, relative noise contributions from the sample and the coil are quantified by a coil noise figure (NF), NF(coil), which adds to the conventional system NF. NF(coil) is determined from the ratio of unloaded-to-loaded coil quality factors Q. Losses from conductors, capacitors, solder joints, eddy currents in overlapped array coils, and the sample are measured and/or computed from 40 to 400 MHz using analytical and full-wave numerical electromagnetic analysis. The Qs are measured for round wire and tape loops tuned from 50 to 400 MHz. NF(coil) is determined as a function of the radius, frequency, and number of tuning capacitors. The computed and experimental Qs and NF(coil)s agree within approximately 10%. The NF(coil) values for 3 cm-diameter wire coils are 3 dB, 1.9 dB, 0.8 dB, 0.2 dB, and 0.1 dB, at 1T, 1.5T, 3T, 7T, and 9.4T, respectively. Wire and tape perform similarly, but tape coils in arrays have substantial eddy current losses. The ability to characterize and reliably predict component- and geometry-associated coil losses is key to designing SNR-optimized loop and phased-array detectors.
منابع مشابه
Concentric dual-loop RF coil for magnetic resonance imaging∗
A surface coil for MRI consisted of two concentric loops was developed to produce brain images with a commercial MR imager. Prior to build the coil prototype, the magnetic field (B1) generated by the coil was numerically simulated. This field simulation is based on the Biot-Savart law for the circularand square-shaped loop coils. From these theoretical results, we can appreciate an improvement ...
متن کاملSingle-feed quadrature coils as transceiver array elements for improved SNR and transmit efficiency
INTRODUCTION: Quadrature or circularly polarized (CP) coils are desired in MR experiments due to their improved MR sensitivity (by 40%) and reduced excitation power (by half) compared with linear coils. This is particularly true in parallel imaging and parallel excitation where the reception/excitation acceleration demands highly efficient receive and transmit. Conventionally quadrature coils a...
متن کاملNon-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)
Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...
متن کاملImplementation of Identical Spiral Square Inductive Coils for Wireless EV Battery Charging Application
In recent years, the popularity of wireless inductive power transfer (WIPT) system for electric vehicle battery charging (EVBC) is always ever-increasing. In the WIPT inductively coupled coil structure is the heart of the system and the mutual inductance (MI) between the coupled coils is the key factor for effective power transfer. This paper presents the analysis of mutual inductance between t...
متن کاملA Comprehensive Coil Resistance Composition Model for High Field
Introduction Loop coils are still widely-used MR receivers. The resistance of loop coils is an important factor influencing the signal-to-noise ratio (SNR) in the MR experiment. In some applications, such as small loops, low field, or lifted-off coils [1], coil noise could be the dominant factor determining SNR. Thus it is critical to fully understand components contributing in coil resistance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 61 5 شماره
صفحات -
تاریخ انتشار 2009